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Motivation

7 Degree-of-freedom manipulator in a glovebox working with humans
and/or other manipulators

Real-time path planning
Want optimal (near-optimal) path
Environment has moving/changing obstacles
Replan, or “fix,” path quickly when obstructed by unexpected
obstacles
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A Short Introduction to Graph Theory [Bullo, 2009]

A graph is a set of vertices (nodes) and edges (order pair of
vertices)
Graphs can be undirected or directed (i.e. can travel forward but
not backwards)
The edges can be unweighted or weighted (i.e. cost to get from
one node to another)

One Sink and
Two Sources

Cycle Undirected
Tree

Directed
Tree
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Useful Notation

Configuration, x : Complete specification of every position of the
robot (i.e. position, velocity, orientation)
Configuration Space, X : Set of all configurations
Obstacle Space, Xobs: Set of all configurations that will cause a
collision with itself or an obstacle
Free Space, Xfree: Xfree = X \Xobs

∂S: Boundary of a set S
O: New obstacle information (i.e. O 6⊂ Xobs)
TG: Tree rooted at xG

TI : Tree rooted at xI ′
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What is Motion Planning? [Lavalle, 2006]

Determining how a robot should move to complete a given task
Types of motion planners

Discrete Planners (i.e. D*, D* Lite)
Bug Algorithms
Sampling-Based Planners

Static Environments (i.e. RRT, RRT*, PRM, PRM*, RRT#)
Dynamic Environments (i.e. DRRT, RRF, LRF, ERRT, MP-RRT)
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Details of the Rapidly Exploring Random Tree*
[Karaman, 2011]

Figure: RRT* after 999 iterations.
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Details of the Rapidly Exploring Random Tree*
[Karaman, 2011]

Figure: Randomly sample from the configuration space. Let’s zoom in!
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Details of the Rapidly Exploring Random Tree*
[Karaman, 2011]

Figure: Zoomed in section with new sample, xnew, point to be added.
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Details of the Rapidly Exploring Random Tree*
[Karaman, 2011]

Figure: Find all neighbors within a given radius.
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Details of the Rapidly Exploring Random Tree*
[Karaman, 2011]

Figure: xnew’s parent: lowest cost-to-come and collision free edge.
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Details of the Rapidly Exploring Random Tree*
[Karaman, 2011]

Figure: Rewire: Check neighbors as children of xnew.
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Details of the Rapidly Exploring Random Tree*
[Karaman, 2011]

Figure: 1000 iterations complete!
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Details of the Rapidly Exploring Random Tree*
[Karaman, 2011]

Figure: RRT* after 10,000 iterations
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Goal Tree Algorithm Overview

Want to:
Adapt the RRT* to handle unexpected obstacles, O

Reduce the runtime in comparison to rerunning the RRT*
Recover the optimal path from xI ′ to xG

Do this by:
Build a tree, TG, whose branches all lead to the goal w.r.t Xobs

Trim TG to reflect conflicts with O

Build new RRT* in “affected area,” TI

Add branches from TG to TI
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Goal Tree Algorithm Details

Robot is executing a path from TG
O is found to be obstructing the path, TG is trimmed
Robot initializes a new tree, TI , at its current configuration
TI is extended toward a random sample
An attempt is made to connect the new vertex in TI to a vertex in
TG
If the attempt is successful, then the entire path from the vertex in
TG to xG is added to TI

(a) (b) (c) (d) (e) (f)

Figure: An illustrative example of how the Goal Tree algorithm works.
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Optimality Overview

Where can TI sample to recover the optimal path?
In“affected area”
Around O

How can we reduce the algorithm runtime
Sample in a small region, R, (i.e. R ( X )
Limiting the collision checks to only obstacles in R
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Robot with No Differential Constraints: Theorem

Theorem

Let X be a d-dimensional C-space such that d ∈ N and d ≥ 2. Let the
initial obstacle space be Xobs and let O 6⊂ Xobs be new obstacle
information. For simplicity, assume that O ∩Xobs =∅. If

1 X is the Euclidean metric space,
2 O ⊂ R ⊂ X,
3 R is convex, and
4 xI ′ ∈ R

then the GT algorithm will converge to a globally optimal path, π, as
n→ ∞ by constructing TI ′ using R and the O information and
employing TG with the previous Xobs.
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Robot with No Differential Constraints: Proof

Obstacle

Figure: The gray lines represent possible paths to xG with the optimal path in
black. The boundary of a possible new sampling region is in blue. The region
defined by the blue has all the properties specified in the previous theorem.
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Robot with General Differential Constraints

Definition

The shadow of xG on O, SO , is the envelope or hull, as defined by
position rather than configuration, formed by the geodesics from all
configurations in Xfree going to xG that are in conflict with O.

Theorem

Let SO be as in Definition 1. If the Goal Tree algorithm uses SO as the
new sampling region to build TI , then it will converge to a globally
optimal path as n→ ∞.

Sketch of Proof Can get from xI ′ to every outgoing configuration
(configuration leaving R); from TI construction. Every outgoing
configuration has a path to xG from TG; by the definition of SO .
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Dubins’ Vehicle Robot

Obstacle

Possible new sampling region for a Dubins’ vehicle (car
with no reverse). Each circle has a radius of 2ρ (ρ is the
minimum turning radius). The boundary of R is in blue.
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Dubins’ Vehicle Robot

Obstacle

Let the green line be a trajectory from xI ′ to some other
configuration inside R.
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Dubins’ Vehicle Robot

Obstacle

Take circles of radius ρ (or greater) and place them tan-
gent to the path and ∂R as shown.
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Dubins’ Vehicle Robot

Create a new path that follows the old the circles, and
∂R. By construction this new path (yellow) has a shorter
length than the original one (green).
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Dubins’ Vehicle Robot

Configuration: x-position,
y-position, and orientation
θ

Minimum turning radius, ρ

Constant speed, v
Control input, u

ẋ(t) = v cos(θ) (1a)
ẏ(t) = v sin(θ) (1b)

θ̇(t) = u, |u| ≤ v
ρ
, (1c)
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Figure: Minimum cost path to xG as a
function of algorithm runtime,
averaged over 100 simulations, for a
Dubins’ vehicle.
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Summary

Introduced the Goal Tree algorithm for replanning in environments
with unexpected obstacles
The GT is asymptotically optimal
A new sampling region R is proven to allow TI to recover the
optimal path
Simulation results from the Dubins’ vehicle show improved
performance over the RRT*
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Future Work

Characterize R for higher dimensional systems with differential
constraints
How to determine S efficiently for use with the GT
Extend the GT for use with multiple robots with multiple tasks

Root a tree at each task location
Each robot builds its own tree rooted at its current location
Possibly integrate cooperative control ideas

B. Boardman, et al. (UCSD and LANL) Goal Tree Algorithm July 16, 2014 22 / 23



References

F. Bullo, J. Cortés, and S. Martı́nez (2009)
Distributed Control of Robotic Networks
Princeton University Press; Applied Mathematics Series
http://coordinationbook.info

S. LaValle (2006)
Planning Algorithms
Cambridge University Press
http://planning.cs.uiuc.edu

S. Karaman and E. Frazzoli (2011)
Sampling-Based Algorithms for Optimal Motion Planning
The International Journal of Robotics Research; Vol 30, No. 7, pgs 846–894

B. Boardman, et al. (UCSD and LANL) Goal Tree Algorithm July 16, 2014 23 / 23


	Introduction
	Motivation
	Background

	Goal Tree Algorithm
	Optimality of the Goal Tree Algorithm
	Characterizations of the New Sampling Region

	Goal Tree Algorithm Simulation
	Conclusion

